Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Practical Software Development: Leveraging AI for Precise Cost Estimation in Lump-Sum EPC Projects
Engineering, McDermott, The Hague, The Netherlands.
Engineering, McDermott, The Hague, The Netherlands.
Engineering, McDermott, The Hague, The Netherlands.
Chalmers University of Technology, Computer Science and Engineering, Gothenburg, Sweden.
Vise andre og tillknytning
2024 (engelsk)Inngår i: 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 1023-1033Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In the Engineering, Procurement, and Construction (EPC) sector, accurate cost estimations during the tendering phase are crucial for maintaining competitiveness, especially with constrained project schedules and rising labor expenses. Typically, these estimations are labor-intensive, relying heavily on manual evaluations of engineering drawings, which are often shared in PDF format due to intellectual property concerns. This study introduces an innovative solution tailored for the energy industry, utilizing Artificial Intelligence (AI) - primarily deep learning (DL) and machine learning (ML) techniques - to streamline material quantity estimation, thereby saving engineering time and costs. Built on empirical data from a large EPC company operating in the energy sector, AI-based product development experiences, and academic research, our approach aims to enhance the efficiency and accuracy of engineering work, promoting better decision-making and resource distribution. While our focus is on enhancing a particular activity within the case company using AI, the method's broader applicability in the EPC sector potentially benefits both industry professionals and researchers. This study not only advances a practical application but also provides valuable insights for those seeking to develop AI -driven solutions across various engineering disciplines.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2024. s. 1023-1033
Serie
European Conference on Software Maintenance and Reengineering proceedings, ISSN 1534-5351, E-ISSN 2640-7574
Emneord [en]
Artificial Intelligence, Engineering, Procurement and Construction (EPC), lump-sum projects, material quantity estimation, energy industry, software development
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-70259DOI: 10.1109/saner60148.2024.00110Scopus ID: 2-s2.0-85197055469ISBN: 979-8-3503-3066-3 (digital)ISBN: 979-8-3503-3067-0 (tryckt)OAI: oai:DiVA.org:mau-70259DiVA, id: diva2:1889554
Konferanse
2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Rovaniemi, Finland, 12-15 March 2024
Tilgjengelig fra: 2024-08-15 Laget: 2024-08-15 Sist oppdatert: 2024-08-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Olsson, Helena Holmström

Søk i DiVA

Av forfatter/redaktør
Olsson, Helena Holmström
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 168 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf