Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ART4FL: An Agent-Based Architectural Approach for Trustworthy Federated Learning in the IoT
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-8025-4734
School of Information Technology, Halmstad University,Halmstad,Sweden.
Birzeit University,Department of Computer Science,Palestine.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0003-0326-0556
Vise andre og tillknytning
2023 (engelsk)Inngår i: 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), Institute of Electrical and Electronics Engineers (IEEE), 2023Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The integration of the Internet of Things (IoT) and Machine Learning (ML) technologies has opened up for the development of novel types of systems and services. Federated Learning (FL) has enabled the systems to collaboratively train their ML models while preserving the privacy of the data collected by their IoT devices and objects. Several FL frameworks have been developed, however, they do not enable FL in open, distributed, and heterogeneous IoT environments. Specifically, they do not support systems that collect similar data to dynamically discover each other, communicate, and negotiate about the training terms (e.g., accuracy, communication latency, and cost). Towards bridging this gap, we propose ART4FL, an end-to-end framework that enables FL in open IoT settings. The framework enables systems' users to configure agents that participate in FL on their behalf. Those agents negotiate and make commitments (i.e., contractual agreements) to dynamically form federations. To perform FL, the framework deploys the needed services dynamically, monitors the training rounds, and calculates agents' trust scores based on the established commitments. ART4FL exploits a blockchain network to maintain the trust scores, and it provides those scores to negotiating agents' during the federations' formation phase.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2023.
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-63749DOI: 10.1109/fmec59375.2023.10306036ISI: 001103180200036Scopus ID: 2-s2.0-85179515213ISBN: 979-8-3503-1697-1 (digital)ISBN: 979-8-3503-1698-8 (tryckt)OAI: oai:DiVA.org:mau-63749DiVA, id: diva2:1813229
Konferanse
2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), Tartu, Estonia, 18-20 September 2023
Tilgjengelig fra: 2023-11-20 Laget: 2023-11-20 Sist oppdatert: 2023-12-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Alkhabbas, FahedSpalazzese, RominaDavidsson, Paul

Søk i DiVA

Av forfatter/redaktør
Alkhabbas, FahedSpalazzese, RominaDavidsson, Paul
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 101 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf