Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neural Network-Based Recent Research Developments in SLAM for Autonomous Ground Vehicles: A Review
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-9596-2688
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-2763-8085
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0001-9376-9844
2023 (engelsk)Inngår i: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 23, nr 13, s. 13829-13858Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

The development of autonomous vehicles has prompted an interest in exploring various techniques in navigation. One such technique is simultaneous localization and mapping (SLAM), which enables a vehicle to comprehend its surroundings, build a map of the environment in real time, and locate itself within that map. Although traditional techniques have been used to perform SLAM for a long time, recent advancements have seen the incorporation of neural network techniques into various stages of the SLAM pipeline. This review article provides a focused analysis of the recent developments in neural network techniques for SLAM-based localization of autonomous ground vehicles. In contrast to the previous review studies that covered general navigation and SLAM techniques, this paper specifically addresses the unique challenges and opportunities presented by the integration of neural networks in this context. Existing review studies have highlighted the limitations of conventional visual SLAM, and this article aims to explore the potential of deep learning methods. This article discusses the functions required for localization, and several neural network-based techniques proposed by researchers to carry out such functions. First, it presents a general background of the issue, the relevant review studies that have already been done, and the adopted methodology in this review. Then, it provides a thorough review of the findings regarding localization and odometry. Finally, it presents our analysis of the findings, open research questions in the field, and a conclusion. A semisystematic approach is used to carry out the review.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2023. Vol. 23, nr 13, s. 13829-13858
Emneord [en]
Autonomous vehicle, deep learning, localization, neural network, odometry, pose, simultaneous localization and mapping (SLAM)
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-62427DOI: 10.1109/JSEN.2023.3273913ISI: 001022960300002Scopus ID: 2-s2.0-85162924023OAI: oai:DiVA.org:mau-62427DiVA, id: diva2:1796645
Tilgjengelig fra: 2023-09-13 Laget: 2023-09-13 Sist oppdatert: 2023-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Malekian, RezaMunir, Hussan

Søk i DiVA

Av forfatter/redaktør
Saleem, HajiraMalekian, RezaMunir, Hussan
Av organisasjonen
I samme tidsskrift
IEEE Sensors Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 146 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf