Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modelling of a Speech-to-Text Recognition System for Air Traffic Control and NATO Air Command
Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP). Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa.ORCID-id: 0000-0002-2763-8085
2022 (engelsk)Inngår i: Journal of Internet Technology, ISSN 1607-9264, E-ISSN 2079-4029, Vol. 23, nr 7, s. 1527-1539Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Accent invariance in speech recognition is a chal- lenging problem especially in the are of aviation. In this paper a speech recognition system is developed to transcribe accented speech between pilots and air traffic controllers. The system allows handling of accents in continuous speech by modelling phonemes using Hidden Markov Models (HMMs) with Gaussian mixture model (GMM) probability density functions for each state. These phonemes are used to build word models of the NATO phonetic alphabet as well as the numerals 0 to 9 with transcriptions obtained from the Carnegie Mellon University (CMU) pronouncing dictionary. Mel-Frequency Cepstral Co-efficients (MFCC) with delta and delta-delta coefficients are used for the feature extraction process. Amplitude normalisation and covariance scaling is implemented to improve recognition accuracy. A word error rate (WER) of 2% for seen speakers and 22% for unseen speakers is obtained.

sted, utgiver, år, opplag, sider
Angle Publishing Co., Ltd. , 2022. Vol. 23, nr 7, s. 1527-1539
Emneord [en]
Automatic Speech Recognition (ASR), Hidden Markov Model (HMM), Gaussian Mixture Model (GMM), Mel-Frequency Cepstral Coefficients (MFCC), Covariance scaling
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-59129DOI: 10.53106/160792642022122307008ISI: 000965724700008Scopus ID: 2-s2.0-85146344089OAI: oai:DiVA.org:mau-59129DiVA, id: diva2:1749252
Tilgjengelig fra: 2023-04-06 Laget: 2023-04-06 Sist oppdatert: 2023-12-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Malekian, Reza

Søk i DiVA

Av forfatter/redaktør
Malekian, Reza
Av organisasjonen
I samme tidsskrift
Journal of Internet Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 136 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf