Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Architecture Based on Machine Learning Techniques and Data Mining for Prediction of Indicators in the Diagnosis and Intervention of Autistic Spectrum Disorder
Department of Computing Technology and Data Processing, University of Alicante, Alicante, Spain.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
Department of Computer Systems Architecture, Gdansk University of Technology, Gdansk, Poland.
Department of Languages and Computing Systems, University of Alicante, Alicante, Spain.
Vise andre og tillknytning
2021 (engelsk)Inngår i: Research and Innovation Forum 2021: Managing Continuity, Innovation, and Change in the Post-Covid World: Technology, Politics and Society / [ed] Anna Visvizi, Orlando Troisi, Kawther Saeedi, Springer, 2021, s. 133-140Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In the complex study to obtain indicators in the autism spectrum disorder it is very common to perform many and very complex tasks. Often, these tasks require the completion of a series of forms and surveys that are even more complex and tedious, which means that the accuracy of the reports is not always satisfactory. In this paper, we propose a general architecture based on machine learning techniques and data mining for prediction of the main indicators in the diagnosis and intervention of the autistic spectrum disorder. The main idea of this approach is to replace those print documents by mobile tests, tablet or smartphones tests through games, store them in databases and analyse them. Furthermore, very often these last two steps are not undertaken with the lack of quantitative and qualitative analysis that could be generated. Finally, the presented architecture is oriented to data collection with the objective of the creation of large specialized datasets. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

sted, utgiver, år, opplag, sider
Springer, 2021. s. 133-140
Serie
Springer Proceedings in Complexity, ISSN 2213-8684, E-ISSN 2213-8692
Emneord [en]
Autism Spectrum Disorder, Data mining, Machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-48623Scopus ID: 2-s2.0-85116482662ISBN: 978-3-030-84310-6 (tryckt)ISBN: 978-3-030-84311-3 (digital)OAI: oai:DiVA.org:mau-48623DiVA, id: diva2:1623260
Konferanse
Research and Innovation Forum 2021
Tilgjengelig fra: 2021-12-28 Laget: 2021-12-28 Sist oppdatert: 2021-12-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

ScopusFulltext

Person

Johnsson, Magnus

Søk i DiVA

Av forfatter/redaktør
Johnsson, Magnus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 84 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf