Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the use of clustering analysis for identification of unsafe places in an urban traffic network
Malmö universitet, Internet of Things and People (IOTAP). Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).
Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium; VU Amsterdam, De Boelelaan 1105, Amsterdam, 1081, Netherlands.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
2020 (engelsk)Inngår i: Procedia Computer Science, E-ISSN 1877-0509, Vol. 170, s. 187-194Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

As an alternative to the car, the bicycle is considered important for obtaining more sustainable urban transport. The bicycle has many positive effects; however, bicyclists are more vulnerable than users of other transport modes, and the number of bicycle related injuries and fatalities are too high. We present a clustering analysis aiming to support the identification of the locations of bicyclists' perceived unsafety in an urban traffic network, so-called bicycle impediments. In particular, we used an iterative k-means clustering approach, which is a contribution of the current paper, and DBSCAN. In contrast to standard k-means clustering, our iterative k-means clustering approach enables to remove outliers from the data set. In our study, we used data collected by bicyclists travelling in the city of Lund, Sweden, where each data point defines a location and time of a bicyclist's perceived unsafety. The results of our study show that 1) clustering is a useful approach in order to support the identification of perceived unsafe locations for bicyclists in an urban traffic network and 2) it might be beneficial to combine different types of clustering to support the identification process. (C) 2020 The Authors. Published by Elsevier B.V.

sted, utgiver, år, opplag, sider
Elsevier, 2020. Vol. 170, s. 187-194
Emneord [en]
Cluster analysis, k-means, iterative k-means, DBSCAN, Click-point data, bicycle impediment
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-37093DOI: 10.1016/j.procs.2020.03.024ISI: 000582714500023Scopus ID: 2-s2.0-85085578574OAI: oai:DiVA.org:mau-37093DiVA, id: diva2:1506456
Konferanse
11th International Conference on Ambient Systems, Networks and Technologies (ANT) / 3rd International Conference on Emerging Data and Industry 4.0 (EDI), APR 06-09, 2020, Warsaw, POLAND
Tilgjengelig fra: 2020-12-03 Laget: 2020-12-03 Sist oppdatert: 2025-01-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Holmgren, Johan

Søk i DiVA

Av forfatter/redaktør
Holmgren, Johan
Av organisasjonen
I samme tidsskrift
Procedia Computer Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 108 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf