Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Agent-based Approach to Realize Emergent Configurationsin the Internet of Things
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-8025-4734
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0003-0326-0556
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0003-0998-6585
2020 (engelsk)Inngår i: Electronics, E-ISSN 2079-9292, Vol. 9, nr 9, artikkel-id 1347Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Internet of Things (IoT) has enabled physical objects and devices, often referred to as things, to connect and communicate. This has opened up for the development of novel types of services that improve the quality of our daily lives. The dynamicity and uncertainty of IoT environments, including the mobility of users and devices, make it hard to foresee at design time available things and services. Further, users should be able to achieve their goals seamlessly in arbitrary environments. To address these challenges, we exploit Artificial Intelligence (AI) to engineer smart IoT systems that can achieve user goals and cope with the dynamicity and uncertainty of their environments. More specifically, the main contribution of this paper is an approach that leverages the notion of Belief-Desire-Intention agents and Machine Learning (ML) techniques to realize Emergent Configurations (ECs) in the IoT. An EC is an IoT system composed of a dynamic set of things that connect and cooperate temporarily to achieve a user goal. The approach enables the distributed formation, enactment, adaptation of ECs, and conflict resolution among them. We present a conceptual model of the entities of the approach, its underlying processes, and the guidelines for using it. Moreover, we report about the simulations conducted to validate the feasibility of the approach and evaluate its scalability. View Full-Text

sted, utgiver, år, opplag, sider
MDPI, 2020. Vol. 9, nr 9, artikkel-id 1347
Emneord [en]
emergent configurations; artificial intelligence; self-adaptive IoT systems
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-36985DOI: 10.3390/electronics9091347ISI: 000580061200001Scopus ID: 2-s2.0-85089677698OAI: oai:DiVA.org:mau-36985DiVA, id: diva2:1504046
Tilgjengelig fra: 2020-11-26 Laget: 2020-11-26 Sist oppdatert: 2024-02-05bibliografisk kontrollert
Inngår i avhandling
1. Realizing Emergent Configurations in the Internet of Things
Åpne denne publikasjonen i ny fane eller vindu >>Realizing Emergent Configurations in the Internet of Things
2020 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The Internet of Things (IoT) is a fast-spreading technology that enables new types of services in several domains such as transportation, health, and building automation. To exploit the potential of the IoT effectively, several challenges have to be tackled, including the following ones that we study in this thesis. First, the proposed IoT visions provide a fragmented picture, leading to a lack of consensus about IoT systems and their constituents. To piece together the fragmented picture of IoT systems, we systematically identified their characteristics by analyzing existing taxonomies. More specifically, we identified seventeen characteristics of IoT systems, and grouped them into two categories, namely, elements and quality aspects of IoT systems. Moreover, we conducted a survey to identify the factors that drive the deployment decisions of IoT systems in practice. A second set of challenges concerns the environment of IoT systems that is often dynamic and uncertain. For instance, due to the mobility of users and things, the set of things available in users' environment might change suddenly. Similarly, the status of IoT systems’ deployment topologies (i.e., the deployment nodes and their interconnections) might change abruptly. Moreover, environmental conditions monitored and controlled through IoT devices, such as ambient temperature and oxygen levels, might fluctuate suddenly. The majority of existing approaches to engineer IoT systems rely on predefined processes to achieve users’ goals. Consequently, such systems have significant shortcomings in coping with dynamic and uncertain environments. To address these challenges, we used the concept of Emergent Configurations (ECs) to engineer goal-driven IoT systems. An EC is an IoT system that consists of a dynamic set of things that cooperate temporarily to achieve a user goal. To realize ECs, we proposed an abstract architectural approach, comprising an architecture and processes, as well as six novel approaches that refine the abstract approach. The developed approaches support users to achieve their goals seamlessly in arbitrary environments by enabling the dynamic formation, deployment, enactment, and self-adaptation of IoT systems. The approaches exploit different techniques and focus on different aspects of ECs. Moreover, to better support users in dynamic and uncertain environments, we investigated the automated configuration of those environments based on users' preferences. 

sted, utgiver, år, opplag, sider
Malmö: Malmö universitet, 2020. s. 254
Serie
Studies in Computer Science ; 12
Emneord
Internet of Things, Emergent Configurations, Goal-driven IoT Systems, Automated Configuration of IoT environments, Software Architectures, Self-adaptive Systems.
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-18508 (URN)10.24834/isbn.9789178771226 (DOI)978-91-7877-121-9 (ISBN)978-91-7877-122-6 (ISBN)
Disputas
2020-12-18, Digitalt, 10:00 (engelsk)
Opponent
Veileder
Prosjekter
Emergent Configurations for IoT Systems – ECOS+
Tilgjengelig fra: 2020-10-06 Laget: 2020-10-06 Sist oppdatert: 2023-12-28bibliografisk kontrollert

Open Access i DiVA

fulltext(1020 kB)179 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1020 kBChecksum SHA-512
32ee48b7560a79a761794dc507abc62fb3fcae0c505c463333473abee99caa18f3a54825c384f95a2ce64208a531fb64e0d64751e316b64efb6f17534ef72d61
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Alkhabbas, FahedSpalazzese, RominaDavidsson, Paul

Søk i DiVA

Av forfatter/redaktør
Alkhabbas, FahedSpalazzese, RominaDavidsson, Paul
Av organisasjonen
I samme tidsskrift
Electronics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 179 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 118 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf