Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).
Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT). Malmö universitet, Internet of Things and People (IOTAP).ORCID-id: 0000-0002-8025-4734
Vise andre og tillknytning
2020 (engelsk)Inngår i: Energy Systems, Springer Verlag, ISSN 1868-3967, E-ISSN 1868-3975, Vol. 13, s. 689-705Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The international community has largely recognized that the Earth's climate is changing. Mitigating its global effects requires international actions. The European Union (EU) is leading several initiatives focused on reducing the problems. Specifically, the Climate Action tries to both decrease EU greenhouse gas emissions and improve energy efficiency by reducing the amount of primary energy consumed, and it has pointed to the development of efficient building energy management systems as key. In traditional buildings, households are responsible for continuously monitoring and controlling the installed Heating, Ventilation, and Air Conditioning (HVAC) system. Unnecessary energy consumption might occur due to, for example, forgetting devices turned on, which overwhelms users due to the need to tune the devices manually. Nowadays, smart buildings are automating this process by automatically tuning HVAC systems according to user preferences in order to improve user satisfaction and optimize energy consumption. Towards achieving this goal, in this paper, we compare 36 Machine Learning algorithms that could be used to forecast indoor temperature in a smart building. More specifically, we run experiments using real data to compare their accuracy in terms of R-coefficient and Root Mean Squared Error and their performance in terms of Friedman rank. The results reveal that the ExtraTrees regressor has obtained the highest average accuracy (0.97%) and performance (0,058%) over all horizons.

sted, utgiver, år, opplag, sider
Springer, 2020. Vol. 13, s. 689-705
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-13827DOI: 10.1007/s12667-020-00376-xISI: 000509132000001Scopus ID: 2-s2.0-85078337875OAI: oai:DiVA.org:mau-13827DiVA, id: diva2:1416536
Tilgjengelig fra: 2020-03-24 Laget: 2020-03-24 Sist oppdatert: 2024-02-05bibliografisk kontrollert

Open Access i DiVA

fulltext(818 kB)273 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 818 kBChecksum SHA-512
f14ff0e2afa764ca7770ba0ee0b01d377fc1d9afb3378757f6c9c7f9024ea217c0ac4df48b6c04d7642d011cebb5fa5cfb30bd6e016e9c7d6347913aff60ecb3
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Alawadi, SadiAlkhabbas, FahedOlsson, Carl MagnusDavidsson, Paul

Søk i DiVA

Av forfatter/redaktør
Alawadi, SadiAlkhabbas, FahedOlsson, Carl MagnusDavidsson, Paul
Av organisasjonen
I samme tidsskrift
Energy Systems, Springer Verlag

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 273 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 392 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf