Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Improved LSSVM Model for Intelligent Prediction of the Daily Water Level
National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, 430063, China.
Marine Intelligent Ship Engineering Research Center, Fujian Province Colleges and Universities, Minjiang University, Fuzhou, 350108, China.
Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400060, China.
National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, 430063, China.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Energies, E-ISSN 1996-1073, Vol. 12, nr 1, artikkel-id 112Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Daily water level forecasting is of significant importance for the comprehensive utilization of water resources. An improved least squares support vector machine (LSSVM) model was introduced by including an extra bias error control term in the objective function. The tuning parameters were determined by the cross-validation scheme. Both conventional and improved LSSVM models were applied in the short term forecasting of the water level in the middle reaches of the Yangtze River, China. Evaluations were made with both models through metrics such as RMSE (Root Mean Squared Error), MAPE (Mean Absolute Percent Error) and index of agreement (d). More accurate forecasts were obtained although the improvement is regarded as moderate. Results indicate the capability and flexibility of LSSVM-type models in resolving time sequence problems. The improved LSSVM model is expected to provide useful water level information for the managements of hydroelectric resources in Rivers.

sted, utgiver, år, opplag, sider
MDPI, 2019. Vol. 12, nr 1, artikkel-id 112
Emneord [en]
least squares support vector machine, water level forecasting, bias error control, Yangtze River
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-2377DOI: 10.3390/en12010112ISI: 000460665000112Scopus ID: 2-s2.0-85060052297Lokal ID: 28041OAI: oai:DiVA.org:mau-2377DiVA, id: diva2:1399130
Tilgjengelig fra: 2020-02-27 Laget: 2020-02-27 Sist oppdatert: 2024-06-17bibliografisk kontrollert

Open Access i DiVA

fulltekst(1998 kB)120 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1998 kBChecksum SHA-512
f22ac07306042972ebaa1283c3e91624c08085b45618bd295e44a5e389cbc0b7fbecdcb6f1083d6b4d559027bbef5e53266e4ad327242763a4d0358dcada0d19
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Malekian, Reza

Søk i DiVA

Av forfatter/redaktør
Malekian, Reza
Av organisasjonen
I samme tidsskrift
Energies

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 120 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 64 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf