Publikationer från Malmö universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Online Controlled Experiment Lifecycle
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0003-4908-2708
Outreach, Seattle, WA, United States.
Malmö universitet, Fakulteten för teknik och samhälle (TS), Institutionen för datavetenskap och medieteknik (DVMT).ORCID-id: 0000-0002-7700-1816
Software Engineering, Chalmers University of Technology, Goteborg, Sweden.
2020 (engelsk)Inngår i: IEEE Software, ISSN 0740-7459, E-ISSN 1937-4194, Vol. 37, nr 2, s. 60-67Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Online Controlled Experiments (OCEs) enable an accurate understanding of customer value and generate millions of dollars of additional revenue at Microsoft. Unlike other techniques for learning from customers, OCEs establish an accurate and causal relationship between a change and the impact observed. Although previous research describes technical and statistical dimensions, the key phases of online experimentation are not widely known, their impact and importance are obscure, and how to establish OCEs in an organization is underexplored. In this paper, using a longitudinal in-depth case study, we address this gap by (1) presenting the Experiment Lifecycle, and (2) demonstrating with four example experiments their profound impact. We show that OECs help optimize infrastructure needs and aid in project planning and measuring team efforts, in addition to their primary goal of accurately identifying what customers value. We conclude that product development should fully integrate the Experiment Lifecycle to benefit from the OCEs.

sted, utgiver, år, opplag, sider
IEEE, 2020. Vol. 37, nr 2, s. 60-67
Emneord [en]
Measurement, Companies, Software, Computer science, Product development, Media, Planning, Data-driven development, A/B tests, Online Controlled Experiments, experiment lifecycle
HSV kategori
Identifikatorer
URN: urn:nbn:se:mau:diva-2309DOI: 10.1109/MS.2018.2875842ISI: 000520152900011Scopus ID: 2-s2.0-85055195833Lokal ID: 28040OAI: oai:DiVA.org:mau-2309DiVA, id: diva2:1399062
Tilgjengelig fra: 2020-02-27 Laget: 2020-02-27 Sist oppdatert: 2024-06-17bibliografisk kontrollert
Inngår i avhandling
1. Data-Driven Software Development at Large Scale: from Ad-Hoc Data Collection to Trustworthy Experimentation
Åpne denne publikasjonen i ny fane eller vindu >>Data-Driven Software Development at Large Scale: from Ad-Hoc Data Collection to Trustworthy Experimentation
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Accurately learning what customers value is critical for the success of every company. Despite the extensive research on identifying customer preferences, only a handful of software companies succeed in becoming truly data-driven at scale. Benefiting from novel approaches such as experimentation in addition to the traditional feedback collection is challenging, yet tremendously impactful when performed correctly. In this thesis, we explore how software companies evolve from data-collectors with ad-hoc benefits, to trustworthy data-driven decision makers at scale. We base our work on a 3.5-year longitudinal multiple-case study research with companies working in both embedded systems domain (e.g. engineering connected vehicles, surveillance systems, etc.) as well as in the online domain (e.g. developing search engines, mobile applications, etc.). The contribution of this thesis is three-fold. First, we present how software companies use data to learn from customers. Second, we show how to adopt and evolve controlled experimentation to become more accurate in learning what customers value. Finally, we provide detailed guidelines that can be used by companies to improve their experimentation capabilities. With our work, we aim to empower software companies to become truly data-driven at scale through trustworthy experimentation. Ultimately this should lead to better software products and services.

sted, utgiver, år, opplag, sider
Malmö university, Faculty of Technology and society, 2018. s. 357
Serie
Studies in Computer Science ; 6
HSV kategori
Identifikatorer
urn:nbn:se:mau:diva-7768 (URN)10.24834/2043/24873 (DOI)24873 (Lokal ID)9789171049186 (ISBN)9789171049193 (ISBN)24873 (Arkivnummer)24873 (OAI)
Disputas
2018-06-15, NI:B0E07, Nordenskiöldsgatan 1, 13:00 (engelsk)
Opponent
Merknad

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Malmö University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

Tilgjengelig fra: 2020-02-28 Laget: 2020-02-28 Sist oppdatert: 2024-04-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttps://www.computer.org/csdl/magazine/so/5555/01/08501922/14ArjyA3D0Y

Person

Fabijan, AleksanderOlsson Holmström, Helena

Søk i DiVA

Av forfatter/redaktør
Fabijan, AleksanderOlsson Holmström, Helena
Av organisasjonen
I samme tidsskrift
IEEE Software

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 114 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf