Malmö University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Deployment of IoT Systems: An Industrial Survey
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).ORCID iD: 0000-0002-8025-4734
Malmö University, Faculty of Technology and Society (TS), Department of Computer Science and Media Technology (DVMT). Malmö University, Internet of Things and People (IOTAP).ORCID iD: 0000-0003-0326-0556
Show others and affiliations
2020 (English)In: 2020 IEEE International Conference on Software Architecture Companion (ICSA-C), 2020Conference paper, Published paper (Refereed)
Abstract [en]

Internet of Things (IoT) systems are complex and multifaceted, and the design of their architectures needs to consider many aspects at a time. Design decisions concern, for instance, the modeling of software components and their interconnections, as well as where to deploy the components within the available hardware infrastructure in the Edge-Cloud continuum. A relevant and challenging task, in this context, is to identify optimal deployment models due to all the different aspects involved, such as extra-functional requirements of the system, heterogeneity of the hardware resources concerning their processing and storage capabilities, and constraints like legal issues and operational cost limits. To gain insights about the deployment decisions concerning IoT systems in practice, and the factors that influence those decisions, we report about an industrial survey we conducted with 66 IoT architects from 18 countries across the world. Each participant filled in a questionnaire that comprises 15 questions. By analyzing the collected data, we have two main findings: (i) architects rely on the Cloud more than the Edge for deploying the software components of IoT systems, in the majority of the IoT application domains; and (ii) the main factors driving deployment decisions are four: reliability, performance, security, and cost.

Place, publisher, year, edition, pages
2020.
National Category
Information Systems, Social aspects
Identifiers
URN: urn:nbn:se:mau:diva-36983DOI: 10.1109/ICSA-C50368.2020.00012ISI: 000587897600006Scopus ID: 2-s2.0-85085747272ISBN: 978-1-7281-7415-0 (electronic)ISBN: 978-1-7281-7416-7 (print)OAI: oai:DiVA.org:mau-36983DiVA, id: diva2:1504041
Conference
2020 IEEE International Conference on Software Architecture Companion (ICSA-C), 16-20 March 2020, Salvador, Brazil
Available from: 2020-11-26 Created: 2020-11-26 Last updated: 2024-02-05Bibliographically approved
In thesis
1. Realizing Emergent Configurations in the Internet of Things
Open this publication in new window or tab >>Realizing Emergent Configurations in the Internet of Things
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The Internet of Things (IoT) is a fast-spreading technology that enables new types of services in several domains such as transportation, health, and building automation. To exploit the potential of the IoT effectively, several challenges have to be tackled, including the following ones that we study in this thesis. First, the proposed IoT visions provide a fragmented picture, leading to a lack of consensus about IoT systems and their constituents. To piece together the fragmented picture of IoT systems, we systematically identified their characteristics by analyzing existing taxonomies. More specifically, we identified seventeen characteristics of IoT systems, and grouped them into two categories, namely, elements and quality aspects of IoT systems. Moreover, we conducted a survey to identify the factors that drive the deployment decisions of IoT systems in practice. A second set of challenges concerns the environment of IoT systems that is often dynamic and uncertain. For instance, due to the mobility of users and things, the set of things available in users' environment might change suddenly. Similarly, the status of IoT systems’ deployment topologies (i.e., the deployment nodes and their interconnections) might change abruptly. Moreover, environmental conditions monitored and controlled through IoT devices, such as ambient temperature and oxygen levels, might fluctuate suddenly. The majority of existing approaches to engineer IoT systems rely on predefined processes to achieve users’ goals. Consequently, such systems have significant shortcomings in coping with dynamic and uncertain environments. To address these challenges, we used the concept of Emergent Configurations (ECs) to engineer goal-driven IoT systems. An EC is an IoT system that consists of a dynamic set of things that cooperate temporarily to achieve a user goal. To realize ECs, we proposed an abstract architectural approach, comprising an architecture and processes, as well as six novel approaches that refine the abstract approach. The developed approaches support users to achieve their goals seamlessly in arbitrary environments by enabling the dynamic formation, deployment, enactment, and self-adaptation of IoT systems. The approaches exploit different techniques and focus on different aspects of ECs. Moreover, to better support users in dynamic and uncertain environments, we investigated the automated configuration of those environments based on users' preferences. 

Place, publisher, year, edition, pages
Malmö: Malmö universitet, 2020. p. 254
Series
Studies in Computer Science ; 12
Keywords
Internet of Things, Emergent Configurations, Goal-driven IoT Systems, Automated Configuration of IoT environments, Software Architectures, Self-adaptive Systems.
National Category
Engineering and Technology
Identifiers
urn:nbn:se:mau:diva-18508 (URN)10.24834/isbn.9789178771226 (DOI)978-91-7877-121-9 (ISBN)978-91-7877-122-6 (ISBN)
Public defence
2020-12-18, Digitalt, 10:00 (English)
Opponent
Supervisors
Projects
Emergent Configurations for IoT Systems – ECOS+
Available from: 2020-10-06 Created: 2020-10-06 Last updated: 2023-12-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Alkhabbas, FahedSpalazzese, Romina

Search in DiVA

By author/editor
Alkhabbas, FahedSpalazzese, Romina
By organisation
Department of Computer Science and Media Technology (DVMT)Internet of Things and People (IOTAP)
Information Systems, Social aspects

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 114 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf