Malmö University Publications
Change search
Link to record
Permanent link

Direct link
Campos Pacheco, Jesus EnriqueORCID iD iconorcid.org/0009-0000-9729-0574
Alternative names
Publications (9 of 9) Show all publications
Campos Pacheco, J. E. (2025). Inhalable bioinspired porous carrier as sole excipient in dry powder formulation for treating lung infections. (Doctoral dissertation). Malmö: Malmö University Press
Open this publication in new window or tab >>Inhalable bioinspired porous carrier as sole excipient in dry powder formulation for treating lung infections
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Pulmonary drug delivery is a well-suited approach for treating lung infections, providing direct and targeted treatment to infected cells. This method enhances drug concentration in the lungs while reducing the required dosage. However, the physiological characteristics of the lungs constitute a complex barrier to drug delivery. Conventional methods often underperform or fail completely, particularly with poorly soluble drugs and inhaled proteins. This thesis explores the use of mesoporous silica particles (MSPs) as sole excipient in dry powder formulations to improve the treatment of lung infections. This study investigated the use of micron-sized mesoporous silica particles (MSPs) as a drug vehicle for clofazimine (CLZ) to target the lung. In simulated lung fluid (SLF), CLZ was released from the MSPs and subsequently formed nanoparticles. This micro-nano strategy significantly enhanced both extracellular and intracellular bactericidal efficacy in relation to mycobacteria, demonstrating its potential for multidrug-resistant TB. This formulation ensured high local drug retention and minimal side effects, indicating that lower CLZ doses could be administered relative to current oral treatment while sustaining adequate antimicrobial concentrations in the lungs. A second study demonstrated the use of MSPs in formulating proteins, specifically lysozyme (LYS), as a dry powder inhaler (DPI), while also examining aerosolization and release profiles. The observed protein lung deposition and preserved enzymatic activity post-release underscored the versatility of MSPs in this therapeutic application. The toxicological effects of MSPs were evaluated, with a focus on whether silica with varying dissolution characteristics influences cell viability and drug release (CLZ). All types of soluble silica exhibited low immunological responses, emphasizing the potential and safety of amorphous silica for pulmonary drug delivery. A further innovation in this thesis was the design of bioinspired lung surfactantcoated MSPs, aimed at enhancing CLZ dissolution and improving particle interaction and transport in mucus and bronchial tissue. Finally, the MSPs coating concept was refined using bacterial lipids from mycobacteria to assess whether the antimicrobial activity of CLZ against mycobacteria could be improved, presenting a novel approach for treating lung infections. Overall, this thesis highlights the potential of bioinspired coated MSPs as an advanced drug delivery system to address unmet challenges in treating respiratory infections and in overcoming antimicrobial resistance. 

Abstract [sv]

Administrering av läkemedel via lungorna är en lovande strategi för behandling av lunginfektioner, eftersom den möjliggör en direkt och målinriktad behandling av infekterade celler. Detta ökar läkemedelskoncentrationen i lungorna och minskar den erforderliga dosen. Lungornas fysiologiska egenskaper utgör dock en komplex barriär för läkemedelsadministrering. Traditionella metoder har ofta begränsad effektivitet, särskilt när det gäller svårlösliga läkemedel och vid proteinbaserade terapier. I denna avhandling undersöks användningen av mesoporösa kiseldioxidpartiklar (MSP) som enda hjälpämne i torrpulverformuleringar, med målet att bidra till behandlingen av lunginfektioner.

Mikrometerstora mesoporösa kiseldioxidpartiklar (MSPs) undersöktes som bärare för klofazimin (CLZ) med syfte att leverera läkemedlet till lungorna. I simulerad lungvätska (SLF) frigjordes CLZ och bildade nanopartiklar. Denna mikro-nano-strategi förbättrade avsevärt både extracellulär och intracellulär avdödning av mykobakterier och visade potential för behandling av multiresistent tuberkulos. Formuleringen gav hög lokal läkemedelsretention och minimala systemiska biverkningar, vilket indikerar att lägre doser av CLZ kan administreras jämfört med nuvarande oral behandling, samtidigt som antimikrobiella koncentrationer i lungorna bibehålls.

I en andra studie visades hur MSP kan användas för att formulera proteiner, specifikt lysozym, som en torrpulverformulering. Aerosoliserings- och frisättningsprofiler undersöktes, och resultaten visade att proteinet deponerades i lungorna samtidigt som dess enzymatisk aktivitet bibehölls. Detta understryker MSP:s mångsidighet för denna typ av terapeutisk tillämpning.

MSP:s effekter på cellviabilitet och läkemedelsfrisättning undersöktes, särskilt om kiseldioxid med olika löslighetsegenskaper påverkar dessa faktorer. Alla typer av löslig kiseldioxid gav begränsade inflammatoriska reaktioner, vilket betonar potentialen och säkerheten hos amorf kiseldioxid för läkemedelsadministrering via lungorna.

En vidareutveckling under avhandlingsarbetet var designen av bioinspirerade lungytaktiva beläggningar på MSP, med målet att förbättra upplösningen av CLZ och underlätta transporten i slem och bronkialvävnad. Detta koncept förfinades ytterligare genom att belägga MSP med bakteriella lipider från mykobakterier, i syfte att undersöka ifall CLZ:s antimikrobiella aktivitet mot mykobakterier kunde förbättras, vilket skulle öppna för en ny strategi för behandling av lunginfektioner.

Sammanfattningsvis visar denna avhandling att bioinspirerade belagda MSP har potential som ett avancerat läkemedelsbärarsystem för att adressera hittills ouppfyllda behov i behandlingen av luftvägsinfektioner och hanteringen av antimikrobiell resistens.

Place, publisher, year, edition, pages
Malmö: Malmö University Press, 2025. p. 89
Series
Malmö University Health and Society Dissertations, ISSN 1653-5383, E-ISSN 2004-9277 ; 2025:6
National Category
Pharmaceutical Sciences
Identifiers
urn:nbn:se:mau:diva-75084 (URN)10.24834/isbn.9789178776290 (DOI)978-91-7877-628-3 (ISBN)978-91-7877-629-0 (ISBN)
Public defence
2025-04-25, Auditorium E002, Faculty of Health and Society, Jan Waldenströms gata 25, Malmö, 09:15 (English)
Opponent
Supervisors
Note

Paper III, IV, V in dissertation as manuscript. Not included in the full text online.

Available from: 2025-04-02 Created: 2025-04-02 Last updated: 2025-05-06Bibliographically approved
Rocío Hernández, A., Bogdanova, E., Campos Pacheco, J. E., Kocherbitov, V., Ekström, M., Pilkington, G. & Valetti, S. (2024). Disordered mesoporous silica particles: an emerging platform to deliver proteins to the lungs. Drug Delivery, 31(1), Article ID 2381340.
Open this publication in new window or tab >>Disordered mesoporous silica particles: an emerging platform to deliver proteins to the lungs
Show others...
2024 (English)In: Drug Delivery, ISSN 1071-7544, E-ISSN 1521-0464, Vol. 31, no 1, article id 2381340Article in journal (Refereed) Published
Abstract [en]

Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71–91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.

Place, publisher, year, edition, pages
Taylor & Francis, 2024
Keywords
Dried powder inhalation, mesoporous silica particles, micronised drug carrier, protein formulation, pulmonary drug delivery
National Category
Pharmacology and Toxicology
Identifiers
urn:nbn:se:mau:diva-70063 (URN)10.1080/10717544.2024.2381340 (DOI)001275373400001 ()39041383 (PubMedID)2-s2.0-85199320256 (Scopus ID)
Available from: 2024-08-02 Created: 2024-08-02 Last updated: 2025-04-22Bibliographically approved
Campos Pacheco, J. E., Yalovenko, T., Riaz, A., Kotov, N., Davids, C., Persson, A., . . . Valetti, S. (2024). Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis. Journal of Controlled Release, 369, 231-250, Article ID S0168-3659(24)00165-2.
Open this publication in new window or tab >>Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis
Show others...
2024 (English)In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 369, p. 231-250, article id S0168-3659(24)00165-2Article in journal (Refereed) Published
Abstract [en]

Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 μm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 μm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Clofazimine, Disordered mesoporous silica particles, Dissolution enhancement, Dried powder formulation, Dual micro-nano carrier, Lung drug delivery, Soluble carrier
National Category
Pharmaceutical Sciences
Identifiers
urn:nbn:se:mau:diva-66943 (URN)10.1016/j.jconrel.2024.03.013 (DOI)001219489000001 ()38479444 (PubMedID)2-s2.0-85189001903 (Scopus ID)
Available from: 2024-04-26 Created: 2024-04-26 Last updated: 2025-04-22Bibliographically approved
Yalovenko, T., Campos Pacheco, J. E., Schousboe, E., Gustafsson, A., Pilkington, G. & Valetti, S. (2023). Cell viability and inflammatory responses of amorphous mesoporous silica particles on different macrophage cells. Journal of Aerosol Medicine, 36(6), A37-A38
Open this publication in new window or tab >>Cell viability and inflammatory responses of amorphous mesoporous silica particles on different macrophage cells
Show others...
2023 (English)In: Journal of Aerosol Medicine, ISSN 1941-2711, E-ISSN 1941-2703, Vol. 36, no 6, p. A37-A38Article in journal, Meeting abstract (Other academic) Published
National Category
Biomedical Laboratory Science/Technology
Identifiers
urn:nbn:se:mau:diva-66243 (URN)001126390700129 ()
Available from: 2024-03-07 Created: 2024-03-07 Last updated: 2025-04-17Bibliographically approved
Hernandez, A. R., Bogdanova, E., Campos Pacheco, J. E., Kocherbitov, V., Feiler, A., Pilkington, G., . . . Valetti, S. (2023). Disordered mesoporous silica particles as emerging platform to deliver biologic molecules to the lungs. Journal of Aerosol Medicine, 36(6), Article ID A32.
Open this publication in new window or tab >>Disordered mesoporous silica particles as emerging platform to deliver biologic molecules to the lungs
Show others...
2023 (English)In: Journal of Aerosol Medicine, ISSN 1941-2711, E-ISSN 1941-2703, Vol. 36, no 6, article id A32Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
Mary Ann Liebert, 2023
National Category
Biomedical Laboratory Science/Technology
Identifiers
urn:nbn:se:mau:diva-66241 (URN)001126390700109 ()
Available from: 2024-03-07 Created: 2024-03-07 Last updated: 2025-04-17Bibliographically approved
Campos Pacheco, J. E., Riaz, A., Falkman, P., Feiler, A., Ekström, M., Pilkington, G. & Valetti, S. (2023). Encapsulation of clofazimine in mesoporous silica as a potential dry powder formulation for treating tuberculosis. Journal of Aerosol Medicine, 36(6), A13-A13, Article ID A13.
Open this publication in new window or tab >>Encapsulation of clofazimine in mesoporous silica as a potential dry powder formulation for treating tuberculosis
Show others...
2023 (English)In: Journal of Aerosol Medicine, ISSN 1941-2711, E-ISSN 1941-2703, Vol. 36, no 6, p. A13-A13, article id A13Article in journal, Meeting abstract (Other academic) Published
National Category
Biomedical Laboratory Science/Technology
Identifiers
urn:nbn:se:mau:diva-66242 (URN)001126390700043 ()
Available from: 2024-03-07 Created: 2024-03-07 Last updated: 2025-04-17Bibliographically approved
Campos Pacheco, J. E., Vitali, A., Falkman, A, P., Marauri, A., Marchès, A., Al-Najjar, H., . . . Valetti, S.Bioinspired lipid coated porous particle as inhalable carrier with pulmonary surfactant adhesion and mucus penetration.
Open this publication in new window or tab >>Bioinspired lipid coated porous particle as inhalable carrier with pulmonary surfactant adhesion and mucus penetration
Show others...
(English)Manuscript (preprint) (Other academic) [Artistic work]
National Category
Medical Biotechnology
Identifiers
urn:nbn:se:mau:diva-75082 (URN)
Available from: 2025-04-02 Created: 2025-04-02 Last updated: 2025-04-17Bibliographically approved
Campos Pacheco, J. E., Davids, C., Yalovenko, T., Näsström, E., Ahnlund, M., Godaly, G. & Valetti, S.Bioinspired mycobacterial lipid coating of porous particles for targeting infected macrophages.
Open this publication in new window or tab >>Bioinspired mycobacterial lipid coating of porous particles for targeting infected macrophages
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Medical Biotechnology
Identifiers
urn:nbn:se:mau:diva-75083 (URN)
Available from: 2025-04-02 Created: 2025-04-02 Last updated: 2025-04-17Bibliographically approved
Yalovenko, J., Campos Pacheco, J. E., Sedelius, G., Schousboe, E., Alionte, A., Pilkington, G. A., . . . Valetti, S.Impact of mesoporous silica particles as dual micro-nano pulmonary carrier on macrophage cells.
Open this publication in new window or tab >>Impact of mesoporous silica particles as dual micro-nano pulmonary carrier on macrophage cells
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Medical Biotechnology
Identifiers
urn:nbn:se:mau:diva-75081 (URN)
Available from: 2025-04-02 Created: 2025-04-02 Last updated: 2025-04-17Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0009-0000-9729-0574

Search in DiVA

Show all publications