Malmö University Publications
Change search
Link to record
Permanent link

Direct link
Riaz, Azra
Publications (2 of 2) Show all publications
Campos Pacheco, J. E., Riaz, A., Falkman, P., Feiler, A., Ekstrom, M., Pilkington, G. & Valetti, S. (2023). Encapsulation of clofazimine in mesoporous silica as a potential dry powder formulation for treating tuberculosis. Journal of Aerosol Medicine, 36(6), A13-A13, Article ID A13.
Open this publication in new window or tab >>Encapsulation of clofazimine in mesoporous silica as a potential dry powder formulation for treating tuberculosis
Show others...
2023 (English)In: Journal of Aerosol Medicine, ISSN 1941-2711, E-ISSN 1941-2703, Vol. 36, no 6, p. A13-A13, article id A13Article in journal, Meeting abstract (Other academic) Published
National Category
Biomedical Laboratory Science/Technology
Identifiers
urn:nbn:se:mau:diva-66242 (URN)001126390700043 ()
Available from: 2024-03-07 Created: 2024-03-07 Last updated: 2024-03-07Bibliographically approved
Riaz, A., Gidvall, S., Prgomet, Z., Hernandez, A. R., Ruzgas, T., Nilsson, E. J., . . . Valetti, S. (2023). Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies. Pharmaceutics, 15(5), 1513-1513
Open this publication in new window or tab >>Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies
Show others...
2023 (English)In: Pharmaceutics, ISSN 1999-4923, E-ISSN 1999-4923, Vol. 15, no 5, p. 1513-1513Article in journal (Refereed) Published
Abstract [en]

Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the correct cell differentiation and tissue architecture, simulating the in vivo conditions better than monolayer cultures or animal tissues. The aim of this work was to develop OME to be used as a membrane for drug permeation studies. We developed both full-thickness (i.e., connective plus epithelial tissue) and split-thickness (i.e., only epithelial tissue) OME using non-tumor-derived human keratinocytes OKF6 TERT-2 obtained from the floor of the mouth. All the OME developed here presented similar transepithelial electrical resistance (TEER) values, comparable to the commercial EpiOral™. Using eletriptan hydrobromide as a model drug, we found that the full-thickness OME had similar drug flux to EpiOral™ (28.8 vs. 29.6 µg/cm2/h), suggesting that the model had the same permeation barrier properties. Furthermore, full-thickness OME showed an increase in ceramide content together with a decrease in phospholipids in comparison to the monolayer culture, indicating that lipid differentiation occurred due to the tissue-engineering protocols. The split-thickness mucosal model resulted in 4–5 cell layers with basal cells still undergoing mitosis. The optimum period at the air–liquid interface for this model was twenty-one days; after longer times, signs of apoptosis appeared. Following the 3R principles, we found that the addition of Ca2+, retinoic acid, linoleic acid, epidermal growth factor and bovine pituitary extract was important but not sufficient to fully replace the fetal bovine serum. Finally, the OME models presented here offer a longer shelf-life than the pre-existing models, which paves the way for the further investigation of broader pharmaceutical applications (i.e., long-term drug exposure, effect on the keratinocytes’ differentiation and inflammatory conditions, etc.).

Place, publisher, year, edition, pages
MDPI, 2023
Keywords
oral transmucosal delivery, oral mucosal equivalents, drug permeation, 3R principles, 3D in vitro models
National Category
Pharmaceutical Sciences
Identifiers
urn:nbn:se:mau:diva-61046 (URN)10.3390/pharmaceutics15051513 (DOI)000997495400001 ()37242755 (PubMedID)2-s2.0-85160448981 (Scopus ID)
Funder
The Crafoord Foundation, 20210937Knowledge Foundation, 20190010
Available from: 2023-06-19 Created: 2023-06-19 Last updated: 2023-08-15Bibliographically approved
Organisations

Search in DiVA

Show all publications